
Bullseye: An Automotive Touch Interface that’s Always on

Target
Garrett Weinberg

Nuance Communications
1 Wayside Rd.

Burlington, MA, U.S.A. 01803

{garrett.weinberg,

Andrew Knowles

Nuance Communications
1500 University suite 935

Montreal, QC, Canada H3A 3S7

andrew.knowles,

Patrick Langer

Nuance Communications
Söflinger Str. 100

89077 Ulm, Germany

patrick.langer}@nuance.com

ABSTRACT

We present Bullseye, a novel tactile user interface for carrying out

entertainment- and information-related tasks in an eyes-busy

environment such as a moving vehicle. Bullseye employs standard

resistive or capacitive touchscreens or touchpads, but in a

radically simplified form. In a traditional touch-based system,

inputs must be carried out at particular XY coordinates

corresponding to particular on-screen widgets. Bullseye input

gestures, by contrast, may be made on the entire surface of the

touchscreen or touchpad without regard to widgets’ location. It

can thereby enable touch applications that require no visual

targeting, an approach that may be preferable to traditional

visually-intensive touch applications when considering the

constraints of the automotive environment. This paper describes

the Bullseye approach and a prototype system built with Bullseye.

Categories and Subject Descriptors

H.5.2 [User Interfaces]: Input devices and strategies

General Terms

Design, Human Factors.

Keywords

Touchscreens; touchpads; low-attention interfaces; gestural

interfaces

1. INTRODUCTION
Touchscreen interfaces have become ubiquitous since the 2007

introduction of the landmark Apple iPhone. Their fundamental

advantage is the combination of information presentation (output)

and information manipulation (input) into a single unified area, as

opposed to requiring two separate areas, with the screen for

output and physical widgets for input. A touchscreen’s virtual on-

screen widgets can be arranged an infinite number of ways to suit

any particular application, and new widgets can be invented to

meet new needs.

A prerequisite for the direct tactile manipulation of these on-

screen widgets, however, is the ability to see these widgets, and

furthermore, to keep these widgets in sight for long enough so that

the tip of the finger may be brought into contact with a widget’s

operable area, a process known as targeting.

In certain operating environments such as a moving vehicle,

neither of these prerequisites can be taken for granted. The

driver’s eyes and hands are occupied with her primary task—

safely operating the vehicle—and she may only selectively and

briefly attend to secondary tasks (operating windshield wipers,

turn signals, etc.) and tertiary tasks (operating in-vehicle

information systems, or IVIS).1 This awareness has been

established in human factors and HCI circles for many years. In

their 2001 report, for example, [4] Burnett et al. noted that

“driver-system interactions should make minimal use of the

human visual sense,” and they call out touchscreen interfaces as

particularly problematic because of their need for targeting and

their “basic lack of tactile and kinesthetic feedback.”

While great strides have been made recently in bringing tactility

to touchscreens (e.g., [11][14][15]), this paper focuses on a

simpler, cheaper technique that drastically reduces the visual-

motor demand of touchscreens by removing the targeting phase

from the touch interaction entirely. After a brief look at the related

standards and literature, we will describe our “one big target”

technique for touchscreens and touchpads, which we call

Bullseye, and explain how we integrated it into an interactive

prototype.

2. RELATED WORK

2.1 Standards
Industrial and regulatory organizations have created standards that

address the potentially distracting effects of manual-visual

interaction with IVIS. The Alliance of Automobile Manufacturers

(AAM) Driver Focus-Telematics working group states in the 2006

edition of its guidelines [8] that “[s]ystems with visual displays

should be designed such that the driver can complete the desired

task with sequential glances that are brief enough not to adversely

affect driving.” The Japan Automobile Manufacturers Association

(JAMA) notes that “drivers must be able to shift their visual

attention to the forward field whenever necessary” [12]. The U.S.

Department of Transportation incorporated aspects of the AAM

and JAMA documents into their recently-issued guidelines to

manufacturers on driver distraction [7], and the European

Commission has in the past issued similar guidelines [5].

2.2 Research
Many researchers have experimented with touch and gestural

interfaces to IVIS. Here we will discuss only a handful of these

works that strike us as having the most in common with the

Bullseye system.

1 In some formulations, the operation of signals, wipers, etc. is

lumped in with steering and acceleration/braking as the driver’s

primary task, leaving IVIS operation to be labeled as the

secondary task. See [13] for more information.

Copyright held by author(s)

AutomotiveUI'12, October 17–19, Portsmouth, NH, USA.

Adjunct Proceedings.

Alpern and Minardo conducted a driving simulation experiment

using gestures for map- and entertainment-related IVIS control

[1]. Their simplification of the gestural vocabulary into

directional gestures (up, down, right, left) and numbers (1 – 5)

mirrors Bullseye’s use of only the cardinal directions for its

swipes.

In their pieTouch prototype, Ecker et al. adapt pie menus to the

automotive touchscreen context [9]. One adaptation that they

make is that the swipes used to select pie “slices” may terminate

anywhere on the screen. The same holds true for Bullseye’s

navigational swipes.

Bach et al. explore using whole-touchpad gestures similar to ours

for the control of music playback [3]. Their subjects found the

gestural interface “pleasant and less demanding and distracting”

than a conventional target-oriented touchscreen and a tactile

(pushbutton) interface, and subjects made the fewest lateral

control errors and the fewest medium- and long-duration (>0.5s

seconds and >2s, respectively) glances away from the road while

using the gestural approach.

2.3 Commercial Deployments
While Audi’s MMI Touch [2] features an absolute touchpad in its

center console in combination with a multifunction rotary knob,

we are not aware of any automobile manufacturers that use a

targeting-free touchscreen or a relative touchpad in their human-

machine interfaces (HMIs).

The closest analog to Bullseye’s “whole screen as target” design

comes from the smartphone world, in particular the photo browser

and Cover Flow music browser [6] that are found on iPhone and

iPod Touch devices (most Android phones have a very similar

photo browser). We will explain below what distinguishes

Bullseye from these implementations.

3. THE BULLSEYE TOUCH INTERFACE
The central idea behind Bullseye is that the entire surface of the

touchscreen or touchpad acts as one large input target rather than

a collection of various input targets with various predefined active

areas.

Swipes in different directions are mapped to different discrete

actions. For example, in our current prototype (which will be

described in more detail below), a vertical swipe in the downward

direction highlights the previous item in a collection of items,

whereas a vertical upwards swipe highlights the next item in a

collection of items. Unlike conventional swipe-oriented interfaces,

with Bullseye only the direction of the swipe matters, not its point

of origin, extent or velocity. Likewise only the number and

duration of tap gestures matters, not their XY coordinates (direct

coordinates in the case of a touchscreen, mapped coordinates in

the case of a touchpad).

A single item from one of the item collections is always in focus,

and serves as the implicit target of tap inputs.

4. WHAT MAKES BULLSEYE

DIFFERENT

4.1 Touch-Somewhere versus Touch-

Anywhere
Conventional direct-touch interfaces require the user to target

specific points or enclosed areas on the touchscreen, each of

which has a given two-dimensional extent. Typical on-screen

elements that must be manipulated include virtual buttons, sliders,

knobs, etc. Conventional indirect-touch interfaces (often

employing touchpads) afford manipulation of a similar set of

widgets, typically via a cursor or pointer that serves as a proxy for

the user’s finger. Indirect-touch interfaces are also typically

positional in nature, in the sense that a finger’s position on the

touchpad is mapped directly to XY coordinates on the screen ([3]

is a notable exception in the automotive realm).

Manipulating widgets using either of these forms of touch

interface requires a visually-intensive targeting process; users

must continually focus on the screen as they guide their finger or

their cursor towards the widget of interest.

Bullseye completely removes this visually intensive targeting

process, because the user never needs to activate specific areas or

widgets on the screen. All operations can be carried out by swipe

gestures and taps anywhere on the entire surface of the screen or

touchpad. This means that users can operate the application

without looking at the screen itself, or with only the briefest of

glances to ascertain the result of a swipe or tap. Spoken or non-

speech audio feedback may be used to reduce or obviate the need

for even these brief glances.

This makes for a more rough-and-ready flavor of touch

interaction. Users can vaguely “paw at” the interaction surface

while focusing most of their attention on the primary driving task.

4.2 Continuous versus Discrete Swipes
Smartphones, with their limited screen real estate, have

necessitated designs that maximize working area by in some cases

eschewing conventional widgets (buttons, lists, etc.) and allowing

the user to interact directly with the content itself: for example

with album art or with photos. In the iOS version of Cover Flow,

one can issue the same rough swipe gestures we make use of in

Bullseye. However there are two important differences that we

feel make Bullseye more suitable for the automotive context:

Firstly, a slow drag or swipe across a given distance on the Cover

Flow screen traverses a different number of items than a fast

swipe across the same distance. The exact number of items that

have been traversed is not able to be deduced without looking at

the screen to observe how many pass through the central focal

frame. Similarly, a short-distance swipe traverses fewer items than

a swipe over a longer distance. In Bullseye, by contrast, both fast

and slow swipes over both short distances and longer distances

result in the traversal of exactly one item. In other words, our

swipe is a discrete navigation operation, incrementing or

decrementing a positional counter by one. A Cover Flow swipe,

on the other hand, is a continuous operation, moving the

positional counter some number of items forward or backward,

where that number depends on the velocity and/or extent of the

gesture.

4.3 Single-Target, No Exceptions!
The second difference is that, in addition to the swipe gestures,

the Cover Flow and photo browser applications feature dedicated

areas on the screen that may be tapped to perform certain special

actions, such as the ‘i’ icon in the lower right hand corner of

Cover Flow which changes the focal item’s display from album

art to a track listing. Tapping the album art in focus does the same

thing, and tapping another album outside of the focal frame brings

that album into focus. A Bullseye application has no such special

on-screen targets for tapping; the entire input surface is one big

target. Similarly, there are locations on the Cover Flow screen

which, if chosen as the origin of the swipe, cause the swipe to

have no effect, for example the status bar at the top of the screen.

Our system has no such “dead zones;” the entire surface can be

employed for any gesture at any time.

5. PROTOTYPE
In recent months we have built an interactive prototype that

employs Bullseye as its tactile interface. Dragon Drive!

Demonstrator (DDD) is the reference implementation for

Nuance’s recently-announced Dragon Drive! Platform. It is a

multimodal (voice + touch) content search application whose GUI

runs on WebKit-enabled mobile browsers and on the Google

Chrome browser for Windows PCs.

5.1 Indexed Navigation Interactions
As explained above, swipes in Bullseye are discrete, relative

events rather than continuous, absolute inputs. As such, DDD

features an index-oriented navigational paradigm. Horizontal

swipes cause the various content domains to slide into view,

occupying the whole screen. DDD domains include Directions,

Music, News, Phone, Messages and Settings, the latter three of

which have only sample content in this prototype (although they

are supported by the underlying Dragon Drive! Platform). Within

each of these domains is a flat (i.e., non-hierarchical) list of items,

the content of which depends on the current search term(s)—or

lack thereof—in the given domain.

For example, in the screenshot composite shown in Figure 1, at

center we see the Music domain after the user has searched by

voice for Art Blakey tracks. If the user swiped from left to right,

she would activate the Directions domain as depicted at left. If the

user instead swiped from right to left while the Music domain was

showing, she would be taken to the News domain. In that domain,

if no search taken place yet she sees the most recent headlines

from her news feed (we have a content licensing agreement with

Time Warner's Entertainment Weekly/EW.com).

Within a given domain, the user swipes vertically to move

forward and backward within the current search filter’s result list,

swapping items into and out of the central focal pane, one item

per swipe.

Text-to-speech (TTS) based auditory feedback indicates to the

user that the system has processed a given navigational swipe

input. After horizontal swipes, the name of the newly active

domain is played along with any currently active filter. After

vertically swiping to activate the next or previous item in a

collection, the new item’s title is read aloud by the TTS

synthesizer. If a user is already at the top or bottom of the list and

tries an invalid vertical swipe, the system plays a “bonk” sound

effect to indicate that item traversal is not possible. These forms

of auditory feedback are essential for eyes-free operation of the

system while driving.

5.2 Contextual Actions and Voice Input
The visual prominence and lighter color of the central pane

differentiates the selected item. This item serves as the implicit

target of a tap (as opposed to swipe) input. A single tap anywhere

on the screen or touchpad carries out the default contextual action

upon the focal item. If the item is a point of interest (POI),

directions to the POI are shown as a swipe-able turn-by-turn list.

If the item is a song, the song is played or paused. If the item is a

news headline, TTS playback of the corresponding article is

started or paused. A double-tap puts DDD into listening mode,

where it can accept both contextual voice commands (e.g., “next

paragraph” when listening to news article playback) and global

commands/searches (e.g., “directions,” “music,” “latest news on

Broadway,” “play Aretha Franklin,” “navigate to Starbucks”). A

long-tap input (tap and hold for more than one second) clears the

current search/filter from the currently active domain, re-

populating that domain’s list with its default content.

6. DISCUSSION AND FUTURE WORK
As the processing power and storage capacity of IVIS continues

to improve and their access to Internet-based content becomes

faster and more ubiquitous, system designers face a tremendous

challenge in creating safe UIs. In order to keep distraction low

and user satisfaction high, they must create intuitive techniques

for selecting individual items from a vast universe of possibilities

(thousands of POI from an onboard DB, millions of songs from a

streaming music service, hundreds of news feeds from hundreds

Figure 1. Bullseye swipe interactions in the Dragon Drive! Demonstrator, illustrated from the perspective of a user in the Music

screen (swipe icons courtesy of GestureWorks, www.gestureworks.com).

of Facebook friends, etc.). Many researchers and practitioners feel

that search-oriented HMIs might address this challenge better than

hierarchical menus with deeply nested functions and interminably

long lists of items (see [10] for more discussion of this point).

Bullseye is well suited for such search-centric system designs. In

fact without a suitable alphanumeric input solution such as robust

ASR (as in DDD) or handwriting recognition (coming soon to

DDD), a Bullseye user would have to swipe once per item in the

unfiltered list, a completely impractical prospect once the list gets

to be over 10 or 20 items in length.

Whether Bullseye’s marriage to alphanumeric input technology is

acceptable remains to be seen as we flesh out DDD to incorporate

more features and thereby more closely resemble a real production

IVIS. Certain domains of functionality, such as climate control,

clearly don’t lend themselves well to list-based representation,

calling instead for physical tactile switches separate from a

Bullseye-based touchscreen or touchpad. Are there enough of

these non-list-friendly functions to make the car dashboard a sea

of buttons and knobs just as intimidating and impenetrable as

today’s screens bristling with submenus and options? Only

further, more functionally complete iterations of our prototype

will tell us.

It is also extremely important to conduct formal simulator and

vehicle-based usability testing of DDD or other systems built with

Bullseye. Can we empirically observe the presumed benefits to

eyes-on-road time that come from Bullseye’s no-targeting-

required eyes-free operability? Is the absolute time required for

the swipes and taps in a Bullseye search interaction greater or

lesser than for a comparable search interaction with a

conventional coordinate-oriented touchscreen? If Bullseye

interaction times are indeed longer, might this perceived

disadvantage be outweighed by better lateral and/or longitudinal

vehicle control in the Bullseye case, or by fewer missed stimuli

(say, the brake lights of a lead vehicle in a following task)? These

are questions only properly designed experiments can answer.

7. ACKNOWLEDGEMENTS
Many thanks to Tim Lynch, Victor Chen, Slawek Jarosz, Rick

Megley and Lars König for their help with the refinement of the

Bullseye concept and the development of the prototype.

8. REFERENCES
[1] Alpern, M. and Minardo, K. 2003. Developing a car gesture

interface for use as a secondary task. In CHI '03 extended

abstracts on Human factors in computing systems (CHI EA

'03). ACM, New York, NY, USA, 932-933.

DOI=10.1145/765891.766078

http://doi.acm.org/10.1145/765891.766078

[2] Audi A8 MMI Touch.

http://www.audiusa.com/us/brand/en/models/a8/explore/a8_

mmi.html

[3] Bach, K.M., Jaeger, M. G., Skov, M. B., and Thomassen, N.

G. 2008. You can touch, but you can't look: interacting with

in-vehicle systems. In Proceedings of the twenty-sixth annual

SIGCHI conference on Human factors in computing systems

(CHI '08). ACM, New York, NY, USA, 1139-1148.

DOI=10.1145/1357054.1357233

http://doi.acm.org/10.1145/1357054.1357233

[4] Burnett, G.E., Porter, J.M.: “Ubiquitous computing within

cars: designing controls for non-visual use” International

Journal of Human-Computer Studies, 55. 2001. pp. 521-531

[5] Commission of the European Communities. 2007.

Commission Recommendation on Safe and Efficient In-

Vehicle Information and Communication Systems: Update of

the European Statement of Principles on Human Machine

Interface.

http://www.umich.edu/~driving/documents/EU_guidelines_2

007.pdf

[6] Cover Flow. http://en.wikipedia.org/wiki/Cover_Flow

[7] Department of Transportation, National Highway Traffic

Safety Administration. Docket No. NHTSA-2010-0053.

Visual-Manual NHTSA Driver Distraction Guidelines for In-

Vehicle Electronic Devices.

http://www.nhtsa.gov/staticfiles/rulemaking/pdf/Distraction_

NPFG-02162012.pdf

[8] Driver Focus-Telematics Working Group, Alliance of

Automobile Manufacturers. 2006. Statement of Principles,

Criteria and Verification Procedures on Driver Interaction

with Advanced In-Vehicle Information and Communication

Systems. http://autoalliance.org/files/DriverFocus.pdf

[9] Ecker, R., Broy, V., Butz, A., and De Luca, A. 2009.

pieTouch: a direct touch gesture interface for interacting with

in-vehicle information systems. In Proceedings of the 11th

International Conference on Human-Computer Interaction

with Mobile Devices and Services (MobileHCI '09). ACM,

New York, NY, USA, Article 22, 10 pages.

DOI=10.1145/1613858.1613887

http://doi.acm.org/10.1145/1613858.1613887

[10] Graf, S., Spiessl, W., Schmidt, A., Winter, A., Rigoll, G.

2008. In-car interaction using search-based user interfaces.

In Proceedings of the twenty-sixth annual SIGCHI

conference on Human factors in computing systems (CHI

'08). ACM, New York, NY, USA, 1685-1688.

DOI=10.1145/1357054.1357317

http://doi.acm.org/10.1145/1357054.1357317

[11] Harrison, C. and Hudson, S. E. 2009. Providing Dynamically

Changeable Physical Buttons on a Visual Display. In

Proceedings of the 27th Annual SIGCHI Conference on

Human Factors in Computing Systems (Boston,

Massachusetts, USA, April 4 - 9, 2009). CHI '09. ACM, New

York, NY. 299-308.

[12] Japan Automobile Manufacturers Association, Inc. Guideline

for In-vehicle Display Systems – Version 3.0.

http://www.jama.or.jp/safe/guideline/pdf/jama_guideline_v3

0_en.pdf

[13] Kern, D., Schmidt, A. Design space for driver-based

automotive user interfaces. In Proceedings of the 1st

International Conference on Automotive User Interfaces and

Interactive Vehicular Applications (AutomotiveUI '09).

ACM, New York, NY, USA, 3-10.

DOI=10.1145/1620509.1620511

http://doi.acm.org/10.1145/1620509.1620511

[14] Senseg electrostatic touchscreen coating.

http://senseg.com/technology/senseg-technology

[15] Tactus microfluidic tactile layer for touchscreens.

http://www.tactustechnology.com/technology.html

